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Document information 

 

General purpose  

 

This document is the deliverable D8.6b of the e-Highway2050 project. It describes the global prototype 

developed in WP8 to implement the methodology presented in D8.6a “Detailed enhanced methodology for 

long-term grid planning”. 
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1. Introduction 

This document intends to give a global description of the main prototype developed in WP8 to implement 

the Enhanced methodology for long-term grid planning. The methodology is described in deliverable D8.6a 

[10], whileD8.6a relies on documents D8.2a [2], D8.3a [4], D8.4a [6] and D8.5a [8], which describe the steps 

in Figure 1 below. 

 

Figure 1 – Methodology proposed in e-Highway2050, WP8 

Similarly to deliverable D8.6a [10], this document relies on prototype descriptions in deliverables D8.2b [3], 

D8.3b [5], D8.4b [7] and D8.5b [9]. 

The use of medium-sized cloud computing facilities has been investigated for the European test case 

presented in D8.6a [10]. This document will try to document the way in which parallel computing was used. 

In former deliverables, modules generally have functional names; from a source-code point of view, scripts 

and code source files have other names, which are not always consistent with functional names or 

descriptions. Prototype is a prototype, so there was no necessity to force participants to use strict naming 

rules. In the next sections, the main titles are based on the Step1 – Step4 naming in Figure 1 above; references 

to former deliverables and functional information are also mentioned and names of source code files are also 

given in order to facilitate their use in the future. 

In the next section, hardware architecture used for the test case is presented. In the following sections, steps 

1 to 4 are presented, with explanations on the way they are parallelized. 

Steps 5 and 6 are not presented in this document since they did not need to be integrated in the common 

platform, so we simply refer to former deliverables: 

• Step 5 - Grid expansion at nodal level is undertaken using the software TEPES  [20], presented in 

section 6 of Deliverable D8.3b [5], 

• Step 6 – Robustness of the proposed grid architectures is presented in Deliverable D8.5b [9]. 

Although TEPES was not fully integrated in the common platform, the proof-of-concept of its integration on 

Linux systems is presented is section 6.  

STEP 1 – ADEQUACY WITHOUT GRID 

STEP 2 – DETECTION OF SYSTEM OVERLOADS 

STEP 3 – NETWORK REDUCTION ACCORDING TO 

CRITICAL BRANCHES 

 

STEP 4 – OPTIMAL GRID EXPANSION AT ZONAL 

LEVEL FROM TODAY TO 2050 

STEP 5 – GRID EXPANSION AT NODAL LEVEL 

STEP 6 – ROBUSTNESS OF THE PROPOSED GRID 

ARCHITECTURES 

Yearly 

Monte-Carlo 

simulations 
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2. Hardware system used for the test case 

High-Performance Computing (HPC) was used in the project iTesla, which applied to the Prace consortium to 

get access to the HPC system Curie with more than 10,000 cores. Running computation on such large 

computers is a real challenge. Moreover, these HPC systems are usually mostly used for fundamental physics 

simulation, and barely for applied research projects. So it was a real success for the iTesla project to be 

granted for an access to the Prace resource Curie, and to be able to actually run iTesla software on this HPC 

system. 

In e-Highway2050 WP8, the target was less ambitious in terms of computing. We used cloud computing 

facilities, which means in our case renting dedicated servers from an external provider. This provider, OVH 

[15], is located in north of France; it operates several large data centres in France and Canada. 

For the prototyping phase a server with 16 cores was rented. When addressing the European test case, we 

rented 4 additional servers to develop and test parallelisation tools. Once we were ready to run large 

computations, we rented 6 further servers. 

For the main computations on the European test case, 9 servers were running in parallel. The 2 remaining 

ones were used by the development team to monitor computations, make intermediate result analyses, or 

to run small tests. To sum up, our main computation system was made of 9 servers, 16 cores each. 

Detailed characteristics of each server “MG128”, as provided by OVH, is: 

• Processor Intel Xeon E5 (2 processors E5-2630v3), 

• 16 cores (8 cores per processor, 2 threads per core if using hyper threading, frequency varying from 

2.4 to 3.2 GHz), 

• 128 GB shared memory (DDR4 ECC 1866 MHz), 

• 3 hard disks of 2 TB, used with RAID3 configuration: one disk is used for redundancy, so 4 TB are 

available for user, 

• Operating system Linux Centos 6.6, 

• Rental price is 300 Euros per month per server. 

Although operating system installation and monitoring facilities are available through a web interface of OVH, 

we had to install software (FicoXpress, Ampl, python packages, Slurm, etc...) manually for each server.  

Preliminary tests on hyper threading showed that for the computations we had to run, hyper threading was 

not efficient. So we decided to limit the number of parallel tasks to 16 on each server. 

Looking at the European test case description in deliverable D8.6a [10], the reader will see 3 different 

scenarios and 3 time horizons. In most parts of the parallel computations, one couple (scenario, time horizon) 

will be run on each server (3 scenarios * 3 time horizons = 9 servers). 
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3. Step 1 and Step 2 

From a computational point of view, Step 1 “Adequacy without grid” and Step 2 “Detection of system 

overloads” are integrated. 

For each couple (scenario, time horizon), one server is used to run 100 Monte-Carlo simulations. 

Main script (script starter_mc_years.sh) will run all computations for a given Monte-Carlo year: 

• Step 1.1: Demand/Generation (script getnewmc). Method in section 3 of D8.2a [2], prototype in 

D8.2b [3]. 

• Step 1.2: Hydro scheduling (script hydro_scheduling). Method in section 4 of D8.2a [2], 

prototype in section 6 of D8.2b [3]. 

• For each of the 52 week, run successively: 

o Step 1.3: Computation of generation planning without grid (script adequacy), one 

optimisation problem per week. Method in section 5 of D8.2a [2], prototype in section 6 of 

D8.2b [3]. 

o Step 2.1: Automatic mapping (script disaggregation). Method in section 3 of D8.3a [4], 

prototype in section 4 of D8.3b [5]. 

o Step 2.2: DCOPF (script wp8dcopf), 7*24 hourly optimization problems. Method in section 

4 of D8.3b [4], prototype in section 4 of D8.3b [5]. 

• Step 2.3: computation of overload indicators from DCOPF results (script 

indicatorsCalculateYear), see section 4.2 of D8.3b [5]. 

As we want to compute 100 Monte Carlo years, the task scheduler will run 16 instances of 

starter_mc_years.sh in parallel. Then it will run the next 16 years, etc... When all 100 Monte-Carlo 

years are finished, results are sent to the master server. 

Each of the 9 server has to run computations for each couple (scenario, time horizon), with 100 Monte-Carlo 

years each. So 900 Monte-Carlo years are computed in total. 

Global computation time is 100/16 rounded up, so 7, to be multiplied by 5 hours for 1 run of 

starter_mc_years.sh. See computation time table in end of D8.6a [10]. The number of Monte-Carlo 

years computed was for some case reduced to 96 instead of 100, because the 4 additional Monte-Carlo years 

caused an additional 5 hours computation time. 

For each Monte-Carlo year, script starter_mc_years.sh generates 5.2 GB of data. For 100 Monte-Carlo 

years, this makes roughly 520 GB. For each couple (scenario, time horizon), these 520 GB are stored on the 

corresponding server. From these 520 GB data, step 2.3 (overload indicators computation) computes 6.5 MB 

of indicators per Monte-Carlo year, so 650 MB per server. These 650 MB are sent to the master server. Total 

amount of overload indicators received by master server is 650 MB * 9 = 6 GB. 

 

4. Step 3: Network Reduction according to critical branches 

The methodology for this step is described in section 5 of D8.3a [4]; the corresponding prototype is presented 

in section 5 of D8.3b [5]. 

This step is not parallelized and is run on one single core. It takes a few minutes to read the 6 GB of indicators 

and to reduce the 1000 nodes network to a 100-zone grid. 
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5. Step 4: Optimal grid expansion at zonal level from today 

to 2050 

5.1. DCOPF 

After reduction to a 100-zones grid, some indicators (e.g. nodal prices) need to be calculated. The same 

DCOPF as in step 2 is run, but on the 100 nodes of the zonal grid instead of one the 1000 nodes in the initial 

grid. The methodology is described in section 4 of D8.3a [4], prototype in section 4 of D8.3b [5]. 

For each couple (scenario, time horizon), these computations are independent, so they are run separately on 

the 9 servers. 

For each couple (scenario, time horizon), the script dcopf_reduced is run on the corresponding server. 

On each of the 9 servers, 16 Monte-Carlo years of the zonal DC OPF are computed in parallel. When they are 

finished, the task scheduler will run the next 16 and so on 

To summarize: as in steps 1 and 2, a total number of 900 Monte-Carlo years of DC OPF are computed, using 

9*16 cores. The computation times are included at the end of deliverable D8.6a [10]. 

The results of these computations stay on each server: they will be used for the zonal-price-difference 

computation on the same server. 

5.2. Zonal-price-difference calculation 

For each couple (scenario, time horizon), the zonal price difference computations are independent, so they 

are run separately on the 9 servers. 

This computation step has to compute zonal-price-differences, using the results of the zonal DC OPF. The 

corresponding script is feature_construction.py. 

For each couple (scenario, time horizon), these computations for the 100 Monte-Carlo years are 

independent, so they are run in parallel on the 16 cores of the corresponding server. The results of the zonal-

price-difference calculation stay on the corresponding server. 

5.3. Snapshot selection 

For each couple (scenario, time horizon), the snapshot selection computations are independent, so they are 

run separately on the 9 servers. 

The script name is snapshot_selection. Its goal is to select a small number of snapshots (e.g. 5 

snapshots) among the 100*52*7*24 snapshots of the 100 Monte-Carlo years. 

Clustering methods are implemented in snapshot_selection. The method is presented in section 2 of 

deliverable D8.4a [6], with complementary discussion in section 5 of D8.6a [10]; the prototype is described 

in section 2 of deliverable D8.4b [7]. The described method is not parallelized. Thus, on each of the 9 servers, 

the snapshot selection is computed on 1 core for the corresponding couple (scenario, time horizon). 

The results of this snapshot selection are sent to the master server. 

5.4. Candidate selection 

For each couple (scenario, time horizon), the candidate selection computations are independent, so they are 

run separately on the 9 servers. 
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The script name is starter_candidate_selection.sh. Its goal is to select candidates to be built by 

the global TEP. The method is presented in section 3 of D8.4a [6] and  the prototype in section 3 of D8.4b [7]. 

The described method is not parallelized. Therefore, on each of the 9 servers, the candidate selection is 

computed on 1 core for the corresponding couple (scenario, time horizon). However, inside the candidate 

selection, the MIP solver FicoXpress [12] is used. FicoXpress is able to run in parallel on several cores, in order 

to launch simultaneously different linear-solver options (namely dual simplex, primal simplex and interior 

point method). In the case of candidate selection, our experiments showed that these features could lead to 

improvements, so we allowed FicoXpress to use all available cores for the optimization problems solved as a 

part of candidate selection. 

The results of candidate selection are sent to the master server. 

 

5.5. Transmission Expansion Planning optimization 

The transmission expansion planning optimization step is run only on the master server. All selected 

snapshots and candidates are sent to the master server. The script starter_TEP.sh takes all these data 

and creates the main optimization problem for zonal TEP, containing all selected snapshots and candidates, 

for all scenarios and time horizons. This problem is solved using FicoXpress. Only one server is used at this 

stage, but all 16 cores of this server are used by FicoXpress. The method is presented in section 4 of D8.4a 

[6], and the prototype in section 4 of D8.4b [7]. 

6. Step 5: Grid expansion at nodal level with TEPES 

The results of expansion planning optimization (at the end of Step 4) are investment decisions for the first 

time horizon, together with compatible investment decisions for each scenario for the two last time horizons. 

The latter investment decisions are not used in Step 5: only investment decisions for the first time horizon 

are kept for Steps 5 and 6. These investment decisions were computed at zonal level, corresponding to 

corridors-capacity modifications. In Step 5, the software TEPES [20] is used to implement these decisions at 

nodal level. 

TEPES is developed for Windows platforms and uses GAMS [21] as an optimization software (GAMS is similar 

to AMPL [11]). All input data, including nodal existing network description, generation, demand scenarios 

and zonal capacity investment decisions are inserted in a dedicated Excel file. From this Excel file, GAMS 

execution is run and results loaded in the Excel file. 

More precisely, the following parts are subsequently executed by TEPES: 

1. Input data extraction from Excel to text files 

2. Text files upload into GAMS model 

3. Computation of the optimal nodal-expansion solution 

4. Results are written by GAMS in GAMS’ internal format named GDX format 

5. Upload of results from GDX files to initial Excel file. 

Parts 1 and 5 are optional. 

Text files created in Part 1 have standard formats and can be easily created directly from AMPL software or 

through Python routines on Linux Server. 

Starting directly from the text files created in Part 1 on a Windows platform, we were able to successfully run 

parts 2 to 4 on the project’s Linux server. It has also been checked that optimization was correctly computed. 

The results were written by GAMS in its GDX format. 
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GAMS software had been installed beforehand on a Linux server with standard installation procedures. A 

utility executable named GDXDUMP is provided by GAMS. This GDXDUMP allows extracting results from GDX 

files to standard text files. 

This proves that TEPES could successfully be integrated on a Linux server within an automatic process. 

7. Software 

7.1. Task scheduler 

The role of a task scheduler is to launch all scripts on all servers, offering a tool to organize and monitor 

scripts dispatching and sequencing. 

The Slurm open source software [16] was selected. Authentication tool used inside Slurm is Munge [22]. 

After installing Slurm on all 9 servers, a master node has to be selected. After the development of all 

appropriate scripts, all tasks may be launched from the master server: 

• Source code, binaries and input data are deployed from the master server to all other 8 servers, 

• Steps 1 to 4 are launched successively, using 9 servers for all parts, except for the network reduction 

and the last TEP optimization, which are run only on the master server. 

7.2.  Other external software and languages 

For the modelling and creation of optimization problems, AMPL [11] is used. Since this program is very easy 

to use and has a syntax very similar to mathematical equations, it is commonly used by optimization 

practitionners. 

For solving linear and MIP (Mixed-Integer Linear Programming) problems, FicoXpress [12] is used. 

For time-series analysis, Monte-Carlo sampling and network reduction Matlab [17] is used. The compiler 

module in Matlab allows compiling Matlab source code and deploying resulting binaries on all computation 

servers. 

Python [18] is used as a language for the calculation of Overload indicators, Snapshot selection and Candidate 

selection. 

BASH [19] shell is used for data gathering, general scripting and task scheduling together with Slurm. 

Data security management is the following: Munge [22] authentication service is used for Slurm task 

scheduling; Openssh software [23] (more precisely: scp client of Openssh) is used for encryption of all data 

exchanged between servers. 

TEPES [20] is developed with GAMS [21] software. 

7.3. Source code tour 

In the following table, all source code files for Step 1 to Step 4 are listed. The number of lines gives a flavour 

of the amount of work done. The total volume for Step 1 to Step 4 is about 28,000 lines. 

 

# of lines Name of source code file Part of prototype 

26 send_notif_mail.sh Task scheduler 

99 config.sh Task scheduler 

779 master_cluster.sh Task scheduler 
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3431 build_scenario Step 1 

3945 getnewmc Step 1 

6125 time_series_analyzer Step 1 

252 onemcyear.sh Step1+Step2 

117 oneweek.sh Step1+Step2 

23 retry_invalid_years.sh Step1+Step2 

5 send_end_master1.sh Step1+Step2 

4 starter_gen_architecture.sh Step1+Step2 

27 starter_get_mc_years.sh Step1+Step2 

48 starter_mc_years.sh Step1+Step2 

76 concate_daemon.sh Step1+Step2 

52 gen_architecture.sh Step1+Step2 

253 hydro_scheduling.mod Hydro Scheduling 

218 hydro_scheduling.run Hydro Scheduling 

386 adequacy.mod Adequacy 

641 adequacy.run Adequacy 

251 disaggregation.run Automatic mapping 

337 wp8dcopf.mod DC OPF 

483 wp8dcopf.run DC OPF 

152 indicatorsCalculateAll.py Olverloads indicators 

177 indicatorsCalculateYear.py Olverloads indicators 

6 starter_network_reduction.sh Network Reduction 

92 network_reduction.sh Network Reduction 

3102 network_reduction Network Reduction 

12 starter_get_network_red.sh Step 4 

14 starter_mc_years_red.sh Step 4 

48 onemcyear_red.sh Zonal DCOPF 

69 oneweek_reduced.sh Zonal DCOPF 

341 dcopf_reduced.mod Zonal DCOPF 

421 dcopf_reduced.run Zonal DCOPF 

19 data_dcopf.run Snapshot Selection 

119 dcopf.mod Snapshot Selection 

24 dcopf.run Snapshot Selection 

66 accl_method.py Snapshot Selection 

130 feature_construction.py Snapshot Selection 

228 feature_construction_all.py Snapshot Selection 

130 feature_construction_F1a.py Snapshot Selection 

190 kmeans_method.py Snapshot Selection 

131 kmeans_method_old.py Snapshot Selection 

91 kmedoids_method.py Snapshot Selection 

143 plot_clustering.py Snapshot Selection 

165 snapshot_selection.py Snapshot Selection 

301 snapshot_selection_clara.py Snapshot Selection 
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265 snapshot_selection_medoids.py Snapshot Selection 

132 snapshot_selection_multi.py Snapshot Selection 

53 util.py Snapshot Selection 

29 snapshot_selection.sh Snapshot Selection 

16 starter_end_snapshot_selection.sh Snapshot Selection 

32 starter_snapshot_selection.sh Snapshot Selection 

223 candidate_analysis.run Candidate selection 

300 candidate_management.run Candidate selection 

291 common.mod Candidate selection 

161 generate_feasible_cand.py Candidate selection 

134 merge_candidates.py Candidate selection 

127 unique_potential_cand.py Candidate selection 

112 unique_potential_cand_v1.py Candidate selection 

600 analysis.py Candidate selection 

61 candidate_selection.sh Candidate selection 

89 candidate_selection.sh Candidate selection 

11 candidate_selection_parallel.sh Candidate selection 

50 starter_candidate_selection.sh Candidate selection 

21 starter_merge_candidate.sh Candidate selection 

181 inv.mod TEP 

155 opex.mod TEP 

266 inv_opex TEP 

392 inv_opex.mod TEP 

138 inv_opex.run TEP 

31 starter_TEP.sh TEP 
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8. Conclusion 

During project e-Highway2050, several teams developed prototypes to implement the global methodology 

drawn in Figure 1. These prototypes have been presented in deliverables D8.2b [3], D8.3b [5], D8.4b [7] and 

D8.5b [9]. Steps 1 to 4 have been integrated on a single medium size cloud computing system. All 

computation and data had to be well organized to run computations on a group of 9 servers with 16 cores 

each. Most parts of the computation could be efficiently parallelized. Massive computations have been run 

over 3 scenarios, 3 time horizons and a total amount of 900 Monte-Carlo years, leading to 47k adequacy MIP 

problems and 15.7M DC OPFs. 

In order to extend to more than one server per couple (scenario, time horizon), special attention should be 

paid to Snapshot selection and Candidate selection. Indeed, these two parts of Step 4 are now running with 

access to all Monte-Carlo simulation results for one couple (scenario, time horizon). If these data were stored 

on more than one server, these two modules should be modified. 

TEP optimization is the final bottleneck. It is a fundamental choice of methodology of WP8 to solve it in one 

single TEP the global optimization problem. The commercial solver FicoXpress allows to use all cores of a 

server to solve this MIP problem on a parallelized Branch-and-Bound tree. In order to enlarge the number of 

snapshots selected for TEP computation, cloud computing systems dedicated to parallel optimization should 

be used. These systems are not standard at the date of writing (2015), but are being developed or tested by 

main optimization companies. 
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