

e-HIGHWAY 2050

Modular Development Plan of the Pan-European
Transmission System 2050

Contract number 308908 Instrument Collaborative Project

Start date 1st of September 2012 Duration 40 months

WP 8 Enhanced Pan-European Transmission Planning Methodology

D 8.4.b Prototype for optimal modular plan to reach 2050 grid architectures

Revision: [1.3 FINAL]

Due date of delivery: [January 2014]

 Date & Visa

Written by Sergeï AGAPOFF, RTE 15/12/2014

Checked by

Leif WARLAND, SINTEF
Patrick PANCIATICI, WP8 Leader
Camille PACHE, RTE
Jean MAEGHT, RTE

06/01/2015

Validated by
Brahim BETRAOUI, RTE
Gérald SANCHIS, Coordinator

12/02/2015

Project co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page ii

Document information

General purpose

This document explains the tools and file formats developed for the task WP8.4 of e-Highway2050 project.
Those explanations focus on the information structure and the actual running of the tools. The definition of
the models can be found in deliverable D8.4.a "Enhanced methodology to define the optimal modular
plan".

Change status

Revision Date Changes description Authors

V0.0 24/11/2014 Initial version S. AGAPOFF

V1.0 15/12/2014 First draft S. AGAPOFF

V1.1 07/01/2015
Typographic corrections
Candidate Selection I/O diagram modified
Data file formats updated

S. AGAPOFF

V1.2 09/01/2015 Typographic corrections S. AGAPOFF

V1.3 16/01/2015 Added “Parameters” section S. AGAPOFF

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page iii

EXECUTIVE SUMMARY

This document describes the prototypes proposed to perform the modules defined in the deliverable
D8.4.a "Enhanced methodology to define the optimal modular plan".

Three modules were developed for the purpose of "Enhanced methodology to define the optimal modular
plan": Snapshot Selection, Candidate Selection and Transmission Expansion Planning (TEP) optimization.

The three modules developed to achieve task 8.4's goal have been implemented in AMPL, Python and
BASH. A folder structure has been proposed to handle the data and the different processes used by the
modules. Finally a script has been written to easily run the whole methodology.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page iv

TABLE OF CONTENT

Document information ... ii

EXECUTIVE SUMMARY ... iii

TABLE OF CONTENT ... iv

INTRODUCTION ... 6

1. Generalities .. 7

1.1. PLATFORM, LANGUAGES AND DATA FORMAT .. 7
1.2. SCRIPTS AND DATA STRUCTURE ... 7

2. Snapshot Selection ... 10

2.1. OBJECTIVE .. 10
2.2. COMMANDS AND DESCRIPTION OF OUTPUTS ... 11

3. Candidate Selection ... 13

3.1. OBJECTIVE .. 13
3.2. COMMAND AND DESCRIPTION OF OUTPUTS ... 14

4. Transmission Expansion Planning (TEP) optimization ... 15

4.1. OBJECTIVE .. 15
4.2. COMMAND AND DESCRIPTION OF OUTPUTS ... 15

5. Input data files ... 17

6. Parameters ... 20

7. Conclusion .. 21

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page v

List of figures

Figure 1 - General folder structure ... 8

Figure 2 - Input/Output diagram for feature_construction.py .. 10

Figure 3 - Input/Output diagram for snapshot_selection.py ... 11

Figure 4 - Input/Output diagram for candidate_selection.sh .. 14

Figure 5 - Input/Output diagram for inv_opex.run .. 15

List of tables

Table I - Parameters ... 20

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 6

INTRODUCTION

This document describes the prototypes proposed to perform the methodology defined in the deliverable
D8.4.a "Enhanced methodology to define the optimal modular plan".

Three modules were developed for the purpose of "Enhanced methodology to define the optimal modular
plan": Snapshot Selection, Candidate Selection and Transmission Expansion Planning (TEP) optimization.
We first present the general concepts and common structures and then explain the three modules and how
they should be performed. In the last section, the formats of input files are presented.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 7

1. Generalities

1.1. Platform, Languages and Data Format

The delivered scripts should be run on a Linux environment. CentOS release 6.5 was installed on the
machine used for tests.

Three languages are used to implement the methodology: Python, AMPL and Bash.

Language Version Main use Extension of runnable files

Python 2.7.8
Data Manipulation
Clustering method

.py

AMPL 20131213 Optimizations .run

BASH 4.1.2(1)-release
Control Python and AMPL when both
are used for a single method

.sh

Several packages should be added to Python:
- Numpy
- Scipy
- Scikit-learn (scikit-learn.org)

All input and internal data is read in "space separated" text files. The intermediate output data (snapshots,
candidates) is provided in that same format and the main outputs (TEP optimization) are provided in "semi-
colon separated" csv files.

1.2. Scripts and Data structure

Since three modules were developed in this task we used a common folder structure for the data and tools
files. Figure 1 describes how those folders are organized in the "Project" folder. In this file tree all folders,
except "Project" and "Case", should be named as it is written in the figure.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 8

Figure 1 - General folder structure

In this entire document we consider that the test case is "Case" and that the current directory is always the
"Case" folder.

As expected, all data files are found in the test_cases subfolder and all scripts in the tools subfolder. In each
test case folder ("Case") the data folders and files should be initialized as follows:

 common_data
o corr_char.txt Characteristics of corridors in the existing grid
o corr_types.txt Corridor Types
o inj_char.txt Injections Characteristics
o inv_maximum.txt Investment Maximum
o list_country.txt List of the studied countries
o scenarios.txt Scenarios information
o years.txt Time-horizons information
o zones.txt Zones characteristics

 snap_data
o input (/horizon/scenario/MCyear/week/)

 snap_char.txt Snapshots info (demand, production injections in each
zones)

 snap_char_UD.txt Updated snapshots info (after DCOPF on the zonal grid)
 zonal_price.txt Zonal Prices for each snapshot (after DCOPF on the zonal grid)

The purpose of the main data files will be explained in the following sections. Some files can be designated
by the same name while being located in different folders (for example input and output files): when it
happens it is clearly specified in the input/output diagrams of each process.

Most of those files are organized as tables of data: the specific formats are detailed in Section 5.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 9

The tools are organized as follows:

 ampl
o candidate_selection

 candidate_analysis.run
 candidate_management.run
 common.dat
 common.mod

o tep_opt
 inv_opex.dat
 inv_opex.mod
 inv_opex.run

 python
o candidate_selection

 generate_feasible_cand.py
 merge_candidates.py
 unique_potential_cand.py

o snapshot_selection
 accl_method.py
 feature_construction.py
 kmeans_method.py
 kmedoids_method.py
 method_analysis.py
 snapshot_selection.py
 solution_analysis.py

 shell
o candidate_selection

 candidate_selection.sh
o complete_method

 complete_method.sh

The whole methodology can be performed thanks to the "complete_method.sh" script. It assumes that the
features have already been constructed (see Section 2.2) and performs the three modules consequently.
The following command which specifies the feature (e.g. F1b) and the number of clusters (e.g. 20) to be
used in the Snapshot Selection should be run:

The next sections describe each module developed for this methodology.

$../../tools/shell/complete_method/complete_method.sh F1b 20

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 10

2. Snapshot Selection

2.1. Objective

The goal of this module is to find a given number of representative snapshots among all the available grid
simulations.

The main inputs to this process are the snap_char_UD and zonal_price files. Those files are time-series
describing the system's behaviour at the zonal level (for each week of each Monte-Carlo year of each
scenario in each time-horizon) and have been computed by running DCOPFs on the aggregated nodal
injections from adequacy without grid:

 snap_char_UD.txt is an update of snap_char.txt (aggregation of the nodal injections from adequacy
simulations): aggregated demand and generation injections are updated in each zone and for each
hour of the week in order to comply with the initial zonal grid constraints.

 zonal_price.txt describes the Local Marginal Price of energy in each zone for each hour of the
week.

The outputs from this module are two files (snapshots.txt and snap_char.txt) describing all the selected
snapshots (their related horizon, scenario and weight) and their characteristics (injections in each zone).

Two steps are needed for this module:

 feature_construction.py: Compute the clustering features: the demand, generation and price
values are combined to obtain the different features (see D8.4a Section 2.2)

 snapshot_selection.py: Cluster the snapshots based on a specific feature: use the chosen feature
to assess the distance between snapshots and cluster them in the desired number of similarity
groups.

The following figure shows the inputs and outputs for the features computation. The indexes and are
used to describe the different features (see D8.4a Section 2.2)

Figure 2 - Input/Output diagram for feature_construction.py

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 11

The following figure shows how the second step (the actual selection) is performed (in this diagram,
 is

the chosen feature).

Figure 3 - Input/Output diagram for snapshot_selection.py

2.2. Commands and description of outputs

Run the feature construction script

The outputs (one text file for each feature) are as follows:

 Fi
v.txt: for each hour of a given week, it gives the value of the feature for each item (a zone, a pair

of zones or a statistical entity such as minimum, maximum etc.)

They are stored in the following folders (for all h in horizons, s in scenarios, MCy in Monte-Carlo years and
w in weeks):

Run the snapshot selection script by specifying:

 The feature (e.g. F1a)

 The number of clusters (e.g. 10)

The outputs are two files (in snap_data/output):

 snapshots.txt: list of the selected snapshots (representatives of the non-empty clusters) with their
related time-horizon and scenario and their weight.

 snap_char.txt: system's behaviour (in adequacy simulations) for each selected snapshot (extracted
from the initial snap_char file found in snap_data/input/)

Another output (snapsel_raw.txt) is provided by this script: it gives raw results of the Snapshot Selection
and can be used to monitor the performances of the module. For each horizon and each scenario, the
information it contains is:

 cluster_solution: assignment of the snapshots to clusters (designated by a number)

 selected_snapshots: list of the selected snapshots and the size of the related cluster

$ python ../../tools/python/snapshot_selection/snapshot_selection.py F1a 10

snap_data/input/h/s/MCy/w/features/

$ python ../../tools/python/snapshot_selection/feature_construction.py

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 12

 distortion: total quantization error (sum over the clusters of intra-cluster distances to the mean)

 stable: boolean for the final state of the snapshot selection loop (True/False)

 snap_code: matching table between snapshots indexes and Monte-Carlo years, week and hour

Once the features have been constructed, there is no need to run the script feature_construction.py again
if the data does not change.

All the available Monte-Carlo years and weeks are used for the selection.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 13

3. Candidate Selection

3.1. Objective

The goal of this module is to find relevant candidates for the TEP optimization among all the available
candidates. This module is performed through several processes in Python and AMPL controlled by a shell
script (candidate_selection.sh):

 generate_feasible_cand.py: for each pair of zones, each corridor type is used to generate a new
candidate

 candidate_management.run: successively assesses the profitability of the candidates, optimizes
the expansion of the most profitable ones (relaxed TEP) and installs them in the grid

 unique_potential_cand.py: cleans the output of the candidate management (groups expansions
corresponding to the same candidate and makes sure that profitable candidates appear only once)

 candidate_analysis.run: tests the installation of candidates that have been identified as
"profitable" but not installed in the Candidate Management (DC power flow to assess the impact of
such an installation).

 merge_candidates.py: the previous processes are performed for each scenario and time-horizon,
this process merges all the obtained candidate pools and adds the complementary and substitute
candidates identified in the Candidate Analysis.

For the Candidate Management, a dynamic description of the grid is needed: the file "corr_char.txt" is
copied from the common_data folder into the cand_data/input/ folder and is named "init_corr_char.txt".
This file is used as the initial grid and a "corr_char.txt" file in cand_data/input/ is used to successively install
the optimal expansion of profitable candidates.

Figure 4 shows how the sub-processes are organized. In this figure we only show how the "candidates.txt"
file is produced. The Candidate Selection also generates a list of combined candidates (to switch a corridor
from the existing grid to another type of corridor): this list gives the information about which candidates
(from the candidates.txt file) should be simultaneously optimized. This file is generated by the
generate_candidates.py script and used by the other processes to find out if such combined candidates are
profitable, installed and complementary or substitute. We do not represent this "combined_candidates.txt"
file in the figure for the sake of simplicity.

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 14

Figure 4 - Input/Output diagram for candidate_selection.sh

3.2. Command and description of outputs

Run the candidate selection script

The intermediate files created by the different sub-processes are stored in cand_data/input/. The actual
outputs of the method (in cand_data/output/) are:

 candidates.txt: list of selected candidates with their characteristics (end zones, type of corridor,
capacity, reactance per unit of length and maximal number of increments).

 combined_candidates.txt: list of pairs of candidates to be optimized simultaneously (to switch a
corridor from the existing grid to another type of corridor)

$../../tools/shell/candidate_selection/candidate_selection.sh

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 15

4. Transmission Expansion Planning (TEP) optimization

4.1. Objective

The goal of this module is to optimize the expansion of the previously selected candidates by minimizing
the total investment cost and the operational consequences (deviation from adequacy simulation on the
selected snapshots). One script is needed for this module:

 inv_opex.run: it optimizes the expansion of the candidates over the different scenarios and time-
horizons, with a common development for the first time-horizons.

The following figure shows the inputs and outputs of this module.

Figure 5 - Input/Output diagram for inv_opex.run

4.2. Command and description of outputs

Run the TEP optimization script

Output files are stored in the current directory ("Case") and are named as follows:
- optimal_increment.csv: expansion solution for each candidate in each scenario and time-horizon
- snap_char_TEP.csv: update of the injections in all the considered snapshots
- AC_flow.csv: values of the AC flows in each snapshot

$ ampl ../../tools/ampl/tep_opt/inv_opex.run

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 16

- DC_flow.csv: values of the AC flows in each snapshot
- costs.csv: detailed costs of the expansion plan (Investment, OPEX, OM)

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 17

5. Input data files

In this section we give the precise format of the input files. We suggest writing the columns' names in the
header of the file (beginning with the hash character "#"): it is not needed for the computation but helps
reading and understanding the files. The following line is an example of header for file "corr_char.txt":

Usually the first column of such files is the index of the entity it describes. Most columns' names have been
chosen so that they are self-explanatory, if not (and especially for columns involving a literal value) we
explain what kind of data is expected.

corr_char.txt

Item CORRIDORS CorrZoneA CorrZoneB CorrType InitCap InitX PstNum

Type Integer Integer Integer Integer Float Float Integer
Unit / / / / MW p.u. /

 PstNum is the number of the PST linked to the corridor

corr_types.txt

Item CORRTYPES Tech OM Inv Cap ...

Type Integer Literal Float Float Float
Unit / / €/(km.year) €/km MW

Item ... X_u LifeTime MaxLength NegType SwitchTo

Type Float Integer Float Integer Integer
Unit p.u./km years km / /

 Tech indicates if the corridor type refers to AC or DC technology

 NegType is the type of which this specific time is the "negative" counterpart (-1 if the type is a
regular corridor type) see D8.4.a Section 3.3 for more details

 SwitchTo is the type to which corridors of the considered type can be switched (-1 if switch is not
allowed for this type) see D8.4.a Section 3.3 for more details

inj_char.txt

Item INJ Sign Ctrl

Type Literal Integer Binary
Unit / / /

 INJ is the name of the injection type

#CORRIDORS CorrZoneA CorrZoneB CorrType InitCap InitX PstNum

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 18

 Sign is +1 (production) or -1 (load)

 Ctrl (0/1) indicates the controllability of the injection (this is only used for feature construction and
not operation of the system)

inv_maximum.txt

Item SCENARIOS HORIZONS InvMax

Type Integer Integer Float
Unit / / €

 SCENARIOS is the number designating the scenario

 HORIZONS is the year designating the time-horizon

 InvMax is the maximum investment allowed in each time horizon and scenario

list_country.txt

Item COUNTRY

Type Literal
Unit /

 COUNTRY indicates the name of the country or area to be considered

scenarios.txt

Item SCENARIOS Ws

Type Integer Float
Unit / /

 SCENARIOS is the number designating the scenario

 Ws is the weight of the scenario

snap_char.txt (and snap_char_UD.txt)

Item SNAPSHOTS ZONES INJ InjRef InjMin InjMax MCp MCn

Type Integer Integer Literal Float Float Float Float Float
Unit / / / MW MW MW €/MW €/MW

 INJ is the name of the considered injection

 InjRef is the reference zonal injection from adequacy simulations

 MCp/n are variation costs of injections, up and down respectively

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 19

years.txt

Item YEARS CommonDev

Type Integer Binary
Unit / /

 YEARS is the year to be considered (e.g. 2020) [starting year has to be included]

 CommonDev indicates if the TEP should be common for the considered year

zonal_prices.txt

Item SNAPSHOTS 1 ... i ... n

Type Integer Float Float Float
Unit / € € €

 is the number designating zone .

 In column the values indicate the Local Marginal Price of energy in zone for each snapshot

zones.txt

Item ZONES ZoneSub CoordX CoordY ZoneCountry Swing

Type Integer Integer Float Float Literal Binary
Unit / / km km / /

 ZoneSub is the substation number (nodal grid) corresponding to the zone number (zonal grid); it is
unused in the considered tools (see other WP8 tasks for explanation)

 ZoneCountry indicates in which country/area the zone is located

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 20

6. Parameters

For the different modules, parameters are needed and can be modified in the different files used for the
processes.

The available parameters are defined in Table I:

 The first unit-less parameters (from to) should be given a value in

 should be strictly positive (if the Length Reference is not used and any value

greater than 0 can be given)

 is an integer

 can be 0 if needed.

Table I - Parameters

Parameter Description Unit File(s) to modify

 Discount rate ampl/tep_opt/inv_opex.run
ampl/candidate_selection/common.mod

 Cluster assignment is
considered stable
when the similarity
between two
successive clustering
solutions is higher
than this threshold

 python/snapshot_selection/kmeans_method.py

 In the Candidate
Analysis,
complementary and
substitute candidates
are only considered if
they change the flow
of more than 50% in at
least one of the
identified candidates

 python/candidate_selection/merge_candidates.py

 Positive penalization
(Architecture focus)

 ampl/tep_opt/inv_opex.mod

 Negative penalization
(Architecture focus)

 ampl/tep_opt/inv_opex.mod

 Length Reference
(Architecture focus)

 ampl/tep_opt/inv_opex.mod

 Nominal Power (fixed
in other parts of the
WP8 methodology)

 ampl/candidate_selection/common.mod
ampl/tep_opt/inv_opex.run

 Maximal Number of
units by candidate

 python/candidate_selection/generate_feasible_cand.py

 Length above which a
switch is automatically
proposed

 python/candidate_selection/generate_feasible_cand.py

D8.4b – Prototype for optimal modular plan to reach 2050 grid architectures

 Page 21

7. Conclusion

The three modules developed to achieve task 8.4's goal have been implemented in AMPL, Python and
BASH. A folder structure has been proposed to handle the data and the different processes used by the
modules.

We presented the data and scripts needed for those processes. Instructions were also given to run the
whole methodology as well as each module individually.

The presented modules are ready for integration and can be automatically run. Parallelization has not been
achieved: it can be done on a high level by scheduling independent parts of the modules to run
simultaneously (for example the Candidate Selection is performed independently for each time-horizon and
each scenario, it could be done in parallel with a common run to merge the different outputs).

